Genetic Variation in Plant CYP51s Confers Resistance against Voriconazole, a Novel Inhibitor of Brassinosteroid-Dependent Sterol Biosynthesis

نویسندگان

  • Wilfried Rozhon
  • Sigrid Husar
  • Florian Kalaivanan
  • Mamoona Khan
  • Markus Idlhammer
  • Daria Shumilina
  • Theo Lange
  • Thomas Hoffmann
  • Wilfried Schwab
  • Shozo Fujioka
  • Brigitte Poppenberger
چکیده

Brassinosteroids (BRs) are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14α-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei.

Voriconazole (UK-109,496) is a novel triazole derivative with potent broad-spectrum activity against various fungi, including some that are inherently resistant to fluconazole, such as Candida krusei. In this study we compared the effect of subinhibitory concentrations of voriconazole and fluconazole on sterol biosynthesis of fluconazole-resistant and -susceptible Candida albicans strains, as w...

متن کامل

The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis.

Lesions in brassinosteroid (BR) biosynthetic genes result in characteristic dwarf phenotypes in plants. Understanding the regulation of BR biosynthesis demands continued isolation and characterization of mutants corresponding to the genes involved in BR biosynthesis. Here, we present analysis of a novel BR biosynthetic locus, dwarf7 (dwf7). Feeding studies with BR biosynthetic intermediates and...

متن کامل

Synthesis of 2RS,4RS-1-[2-phenyl-4-[2-(2-trifluromethoxy-phenoxy)-ethyl]-1,3-dioxolan-2-yl-methyl]-1H-1,2,4-triazole derivatives as potent inhibitors of brassinosteroid biosynthesis.

Brassinosteroids are important phytohormones that affect many aspects of plant growth and development. In order to manipulate brassinosteroid levels in plant tissues by using specific biosynthesis inhibitors, we have carried out a systemic search for specific inhibitors of brassinosteroid biosynthesis. Synthesis of triazole derivatives based on the ketoconazole scaffold revealed a series of nov...

متن کامل

Virus-induced silencing of sterol biosynthetic genes: identi®cation of a Nicotiana tabacum L. obtusifoliol-14a- demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L.*

Obtusifoliol-14a-demethylase (CYP51) is implicated in plant sterol biosynthesis. An Arabidopsis expressed sequence tag encoding a CYP51 was used as a probe to isolate Nicotiana tabacum L. cDNAs. Two types of cDNA clones were identi®ed. Nt CYP51-1 and Nt CYP51-2 shared 97% identity together and around 75% with other plant CYP51s. The function of the encoded enzyme has been demonstrated in planta...

متن کامل

Pharmacophore-Based Virtual Screening of Novel Inhibitors and Docking Analysis for CYP51A from Penicillium italicum

Sterol 14α-demethylases from Cytochrome P450 family (CYP51s) are essential enzymes in sterol biosynthesis and well-known as the target of antifungal drugs. The 3D structure of CYP51A from Penicillium italicum (PiCYP51A) was constructed through homology modeling based on the crystal structure of human CYP51A (PDB: 3LD6). Molecular dynamics (MD) simulation was operated to relax the initial model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013